
Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

The C Application Programming Interface
Abbreviations used in this document
To save space, the following abbreviations are used in function declarations; this table summarizes all
abbreviations, including those defined later:

#define L lua_State *L Pointer to a Lua state (environment) to operate upon.
#define LS lua_State A Lua state.
#define LN lua_Number Number in Lua native format, whose actual type is defined by

LUA_NUMBER at compile time (default: double).
#define CF lua_CFunction (Pointer to) a C function callable from Lua; see C functions below.
#define LD lua_Debug Structure containing debug information; see debugging.
#define LB luaL_Buffer Structure used by string buffer functions in auxiliary library; see

String buffers in auxiliary library.
#define CC const char C type used for immutable characters or strings.
#define SZ size_t C type used for byte sizes (e.g. block lenghts).
#define VL va_list C type used to receive a variable number of arguments.

Required headers
extern "C" { ... } required around #includes if Lua is compiled as C and linked to C++.
#include "lua.h" required for the Lua core, link with liblua library.
#include "lualib.h" required for the standard Lua libraries, link with liblualib library.
#include "lauxlib.h" required for the auxiliary Lua library, link with liblualib library.

Initialization, termination, version information
LS *lua_open (void); Creates and returns a Lua state; multiple states can coexist.
int luaopen_base (L); Opens and initializes the basic library; returns 0.
int luaopen_table (L); Opens and initializes the table library;

returns 1 and pushes the “table” table on the Lua stack.
int luaopen_math (L); Opens and initializes the math library;

returns 1 and pushes the “math” table on the Lua stack.
int luaopen_string (L); Opens and initializes the string library;

returns 1 and pushes the “string” table on the Lua stack.
int luaopen_io (L); Opens and initializes I/O and operating system libraries;

returns 1 and pushes the “io” table on the Lua stack.
int luaopen_debug (L); Opens and initializes the debug library;

returns 1 and pushes the “debug” table on the Lua stack.
int luaopen_loadlib (L); Opens and initializes the loadlib library. i.e. Lua loadlib () function for dynamic

loading (included in the Basic library); returns 0.
void lua_openlibs (L); Opens all the above standard libraries.
void lua_close (L); Closes the Lua state L, calls __gc metamethods (finalizers) for userdata (if any),

releases all resources.

C functions
typedef int (*lua_CFunction) (L); (pointer to) C function to be called by Lua.
#define CF lua_CFunction Abbreviation used in this document.

C API: the Lua stack
Stack terms used in this document
size The available stack space (maximum number of possible entries).
top The number of elements currently in the stack.
stack[i] Abbreviation for "the value found in the stack at position (index) i".
valid indexes Stack indexes are valid if (1 <= abs(i) <= top):

 1..top = absolute stack position (push order);
 -1..-top = offset from top + 1 (pop order);
 special pseudo-indexes (see Pseudo-indexes below);
examples: [1] = first element; [-1] = top = last pushed element.

acceptable indexes The valid indexes above plus (top < i <= size), containing no value.
"Invalid indexes" must still be acceptable: Lua does no checking, unless api_check
() is enabled by removing the comments in the relevant line of lapi.c.

to push To add an element on top of stack, increasing top by 1.
to pop To remove an element from top of stack, decreasing top by 1.

Basic stack operations and information
LUA_MINSTACK Initial stack size when Lua calls a C function; the user is responsible for

avoiding stack overflow.
int lua_checkstack (L, int n); Tries to grow stack size to top + n entries (cannot shrink it);

returns 0 if not possible.
int lua_gettop (L); Returns current top (0 = no elements in stack).
void lua_settop (L, int i); Sets top to i; removes elements if new top is smaller than previous top,

adds nil elements if larger.
void lua_pushvalue (L, int i); Pushes a copy of the element at stack[i].
void lua_insert (L, int i); Moves stack[top] to stack[i], shifting elements as needed.
void lua_replace (L, int i); Moves stack[top] to stack[i], overwriting it (no shifting).
void lua_remove (L, int i); Removes element from stack[i], shifting elements as needed.
void lua_pop (L, int n); Pops and discards n elements.
void lua_xmove
(LS *a, LS *b, int n);

Pops n values from the stack of Lua state (or thread) a, pushes them on the
stack of Lua state (or thread) b.

Pseudo-indexes
LUA_REGISTRYINDEX Pseudo-index to access the registry table.
LUA_GLOBALSINDEX Pseudo-index to access the global environment table.
int lua_upvalueindex (int n); Returns a pseudo-index to access upvalue number n (from 1, in order of

creation).

Type constants (also used for stack elements)
LUA_TNONE No value: invalid (but acceptable) index.
LUA_TNIL nil.
LUA_TBOOLEAN Lua boolean (true or false).
LUA_TNUMBER Lua number, actual type depends on LUA_NUMBER.
LUA_TSTRING Lua string, may include embedded zeros.
LUA_TTABLE Lua table.
LUA_TFUNCTION Lua function or C function callable from Lua.
LUA_TUSERDATA Full Lua userdata.
LUA_TLIGHTUSERDATA Light Lua userdata (e.g. C pointer).
LUA_TTHREAD Lua thread.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 1/6

Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

Checking stack elements
int lua_type (L, int i); Returns the type of the value at stack[i], see Type constants above

(LUA_TNONE if no value at i).
CC *lua_typename (L, int t); Converts t returned by lua_type () to a readable string.
int lua_isnone (L, int i); Returns 1 if stack[i] has no value (LUA_TNONE), else 0.
int lua_isnil (L, int i); Returns 1 if stack[i] is nil, else 0.
int lua_isnoneornil (L, int i); Returns 1 if stack[i] has no value or is nil, else 0.
int lua_isboolean (L, int i); Returns 1 if stack[i] is a boolean (true or false), else 0.
int lua_isnumber (L, int i); Returns 1 if stack[i] is a number or a string representing a valid number

(use lua_type () to discriminate), else 0.
int lua_isstring (L, int i); Returns 1 if stack[i] is a string or a number (use lua_type () to

discriminate), else 0.
int lua_istable (L, int i); Returns 1 if stack[i] is a table, else 0.
int lua_isfunction (L, int i); Returns 1 if stack[i] is a Lua function or a C function (use lua_iscfunction

() to discriminate), else 0.
int lua_iscfunction (L, int i); Returns 1 if stack[i] is a C function, else 0.
int lua_isuserdata (L, int i); Returns 1 if stack[i] is a full or a light userdata (use lua_islightuserdata ()

to discriminate), else 0.
int lua_islightuserdata (L, int i) Returns 1 if stack[i] is a light userdata, else 0.

See also: Generic stack checking in auxiliary library.

Reading values from stack elements
int lua_toboolean (L, int i); Returns 0 if stack[i] is false or nil (also if i is invalid), 1 otherwise.
LN lua_tonumber (L, int i); Returns stack[i] (number or string representing a valid number) as a

number, 0 if invalid value or invalid i.
CC *lua_tostring (L, int i); Returns stack[i] (string or number) as a zero-terminated string (may also

contain embedded zeros), NULL if invalid value or invalid i; see note
below.
If element i is a number, it is changed to a string; this may confuse table
traversal if done on keys.

SZ lua_strlen (L, int i); Returns the actual length of string at stack[i], including embedded zeros (if
any), 0 if invalid value or invalid i.

CF lua_tocfunction (L, int i); Returns (a pointer to) a C function at stack[i], NULL if invalid value or
invalid i.

void *lua_touserdata (L, int i); Returns a pointer to the data block of full userdata at stack[i], the pointer
itself for light userdata, NULL if invalid value or invalid i. See pointers
note below.

LS *lua_tothread (L, int i); Returns (a pointer to) a Lua thread (a Lua state) at stack[i], NULL if
invalid value or invalid i. See pointers note below.

void *lua_topointer (L, int i); Returns a pointer to a table, function, userdata or thread at stack[i], NULL
if invalid value or invalid i. Mainly used for debugging. See pointers note
below.

Pointers note: Returned C pointers are valid while stack[i] remains in the stack; after that they could
become invalid due to garbage collection.

See also: Reading and checking values from stack elements in auxiliary library.

Pushing elements on top of stack
void lua_pushnil (L); Pushes a Lua nil value.
void lua_pushboolean (L, int b); Pushes b as Lua boolean (0 becomes false, all other values

become true).
void lua_pushnumber (L, LN n); Pushes n as Lua number.
void lua_pushstring (L, CC *s); Pushes a copy of zero-terminated string s as Lua string.
void lua_pushliteral (L, CC *s); As lua_pushstring () but s must be a literal string; slightly faster

as it doesn't call strlen ().
void lua_pushlstring (L, CC *s, SZ n); Pushes a copy of n bytes of data block s as generic Lua string

(may contain embedded zeros).
CC *lua_pushfstring (L, CC *fs, ...); Pushes a Lua string built by replacing formatting directives in the

string fs with the following args; behaves like sprintf () but with
no flags, width or precision and only allowing:
 "%s" = a zero-terminated string,
 "%f" = a lua_Number,
 "%d" = an integer,
 "%c" = a character passed as int,
 "%%" = a '%' symbol;
takes care of allocation and deallocation;
returns a pointer to the resulting string. See pointers note below.

CC *lua_pushvfstring (L, CC *fs, VL
ap);

Same as lua_pushfstring () above but receives a variable list of
arguments as vsprintf () does.

void lua_pushcfunction (L, CF cf); Pushes a C function cf callable from Lua.
void lua_pushcclosure(L, CF cf, int n); Pops n values and pushes a C function cf callable from Lua, with

those values as upvalues.
void *lua_newuserdata (L, SZ n); Allocates and pushes a n-byte memory block as full userdata (at

garbage collection, a __gc metamethod will be called before
deallocation);
returns a pointer to the new data block. See pointers note below.

void lua_pushlightuserdata (L, void *p); Pushes p as light userdata.

Pointers note: Returned C pointers are valid while stack[i] remains in the stack; after that they could
become invalid due to garbage collection.

Comparing stack elements
int lua_equal (L, int i, int j); Returns true (!= 0) only if stack[i] == stack[j] in Lua (possibly

calling __eq metamethod) and indexes are valid.
int lua_rawequal (L, int i, int j); Same as lua_equal () above but does not call metamethod.
int lua_lessthan (L, int i, int j); Returns true (!= 0) only if stack[i] < stack[j] in Lua (possibly

calling __lt metamethod) and indexes are valid.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 2/6

Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

C API: tables, metatables, registry, environment
Tables and metatables
void lua_newtable (L); Creates and pushes a new, empty table.
void lua_settable (L, int i); Pops a key and a value, stores key-value into table at stack[i]; calls

__newindex metamethod, if any, in case of new field assignment (the
table stays at stack[i]).

void lua_gettable (L, int i); Pops a key, reads and pushes its value from table at stack[i]; calls
__index metamethod, if any, for non-existing field; pushes the read
value, or nil (the table stays at stack[i]).

void lua_rawset (L, int i); As lua_settable () above, but does not call metamethod.
void lua_rawget (L, int i); As lua_gettable () above, but does not call metamethod.
void lua_rawseti (L, int i, int n); Pops a value, stores it into numeric element n of table at stack[i] (the

table stays at stack[i]).
void lua_rawgeti (L, int i, int n); Reads a value from numeric element n of table at stack[i]; pushes the

read value (the table stays at stack[i]).
int lua_setmetatable (L, int i); Pops a table, sets it as metatable for object at stack[i];

returns 0 if stack[i] is not table or userdata, or i is invalid.
int lua_getmetatable (L, int i); Reads metatable from object at stack[i]; pushes the metatable (if no

error);
returns 0 if stack[i] has no metatable or i is invalid.

See also: Tables and metatables in auxiliary library.

Useful operations on tables
void lua_concat (L, int n); Pops n values, efficiently concatenates them into a single value (empty

string if n is 0); numbers are converted to strings using Lua rules, for
other types the __concat metamethod is called; pushes the resulting
value.

int lua_next (L, int i); Does an iteration step on table at stack[i]: pops a key (nil = start
traversal), pushes the next key and its value
(note: do not use lua_tostring () on the key);
returns 0 and pushes nothing if there are no more keys.

Registry table
LUA_REGISTRYINDEX Pseudo-index to access the registry table.
void lua_register (L, CC *fn, CF cf); Registers C function cf with Lua name fn.

See also: Registry references and Library initialization in auxiliary library.

Environment tables
LUA_GLOBALSINDEX Pseudo-index to access the global environment table.
int lua_setfenv (L, int i); Pops a table, sets it as environment table for Lua function at stack[i];

returns 0 if stack[i] is not a Lua function.
void lua_getfenv (L, int i); Pushes the environment table of Lua function at stack[i], or the global

environment if stack[i] is a C function.

C API: loading, saving, executing
Loading and saving chunks
typedef CC * (*lua_Chunkreader)
(L, void *d, SZ *n);

User-supplied reader function to read a block of n bytes into a local
buffer; any needed state (e.g. a FILE*) can be passed using d;
returns a pointer to a local buffer containing the data block, or
NULL in case of error; also sets n to the number of bytes actually
read.

typedef int (*lua_Chunkwriter)
(L, const void *p, SZ n, void *d);

User-supplied writer function to write a block of n bytes starting
from address p; any needed state (e.g. a FILE*) can be passed using
d;
the returned value is currently unused (Lua 5.0.2).

int lua_load
(L, lua_Chunkreader r, void *d, CC *s);

Loads and compiles (does not execute) a text or precompiled Lua
chunk using user-supplied reader function r (r will also receive the
user data argument d), uses s as name for the loaded chunk, pushes
the compiled chunk as a function;
returns 0 if OK, LUA_ERRSYNTAX if syntax error,
LUA_ERRMEM if allocation error.

int lua_dump
(L, lua_Chunkwriter w, void *d);

Saves (writes) the function from stack[top] as a binary precompiled
chunk using user-supplied writer function w (w will also receive
the user data argument d);
cannot save functions with closures;
returns 1 if OK, 0 if no valid function to save.

See also: Chunk loading in auxiliary library for simpler chunk loading from files and strings.

Executing chunks
void lua_call (L, int na, int nr); Calls a (Lua or C) function; the function and na arguments must be

pushed in direct order and will be removed from the stack;
if nr is LUA_MULTRET all results will be pushed in direct order,
else exactly nr results will be pushed;
any error will be propagated to the caller.

int lua_pcall (L, int na, int nr, int i); As lua_call () but catches errors; in case of error, if i is 0 pushes an
error message string, else calls the error function at stack[i], passing
it the error message, then pushes the value it returns;
returns 0 if OK, LUA_ERRRUN if runtime error, LUA_ERRMEM
if allocation error (error function is not called), LUA_ERRERR if
error while running the error handler function.

int lua_cpcall (L, CF cf, void *ud); Pushes a light userdata containing ud and calls C function cf; in
case of error pushes ud, else leaves the stack unchanged;
returns 0 if OK, or error code as lua_pcall () above.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 3/6

Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

C API: threads, error handling, garbage collection
Threads
LS *lua_newthread (L); Creates and pushes a new thread with a private stack;

returns a pointer to a new Lua state.
int lua_resume (L, int na); Starts or resumes a coroutine passing na pushed arguments; when

returning, the stack will contain function return results, or lua_yield ()
pushed return values, or an error message;
returns 0 if OK, or error code as lua_pcall () above.

int lua_yield (L, int nr); Suspends coroutine execution passing nr return values to lua_resume ();
does not return to the calling C function; can only be called as C return
expression;

Note: see lua_xmove in Basic stack operations for moving data between threads.

Error handling
int lua_error (L); Raises an error, using error message from top of stack; does not return.
CF lua_atpanic (L, CF cf); Registers C function cf to be called in case of unhandled error; the Lua

state will be inconsistent when cf is called; if cf returns, calls os.exit
(EXIT_FAILURE).

See also: Error reporting in auxiliary library.

Garbage collection
int lua_gc (L, int what, int data); Controls garbage collector.

• LUA_GCSTOP: stops the garbage collector.
• LUA_GCRESTART: restarts the garbage collector.
• LUA_GCCOLLECT: performs a full garbage-collection

cycle.
• LUA_GCCOUNT: returns the current amount of memory (in

Kbytes) in use by Lua.
• LUA_GCCOUNTB: returns the remainder of dividing the

current amount of bytes of memory in use by Lua by 1024.
• LUA_GCSTEP: performs an incremental step of garbage

collection.
• LUA_GCSETPAUSE: sets data/100 as the new value for the

pause of the collector. The function returns the previous value
of the pause.

• LUA_GCSETSTEPMUL: sets data/100 as the new value for
the step multiplier of the collector. The function returns the
previous value of the step multiplier.

C API: debugging, hooks
Hooks
typedef void (*lua_Hook) (L, LD *ar); Function to be called by a hook (see above for LD).
int lua_sethook (L, lua_Hook hf, int m, int n); Sets function hf as hook for the events given in mask m, a

combination of one or more or-ed bitmasks:
LUA_MASKCALL = function call, LUA_MASKRET =
function return, LUA_MASKLINE = new code line,
LUA_MASKCOUNT = every n instructions;
removes the hook function if m is 0;
returns 1.

lua_Hook lua_gethook (L); Returns (a pointer to) the current hook function.
int lua_gethookmask (L); Returns the current hook mask.
int lua_gethookcount (L); Returns the current hook instruction count.

Debugging structure (activation record)
typedef struct lua_Debug {

int event;
CC *name;
CC *namewhat;
CC *what;
CC *source;
int currentline;
int nups;
int linedefined;
char short_src[LUA_IDSIZE];
/* private part follows*/

} lua_Debug;

/* Structure used by debugging functions */

/* function name, or NULL if cannot get a name. */
/* type of name: "global", "local", "method", "field", "" */
/* function type: "main", "Lua", "C" of "tail" (tail call) */
/* source as a string, or @filename */
/* line number, or -1 if not available */
/* number of upvalues, 0 if none */
/* line number where the function definition starts */
/* short, printable version of source */

Debugging
#define LD lua_Debug Abbreviation used in this document.

int lua_getstack (L, int n, LD *ar); Makes ar refer to the function at calling level n
[0 = current, 1 = caller];
returns 1 if OK, 0 if no such level.

int lua_getinfo (L, CC *w, LD *ar); Fills fields of ar with information, according to one or more characters
contained in the string w:
'n': fills name and namewhat.
'f': pushes the function referenced by ar.
'S': fills what, source, short_src and linedefined.
'l': fills currentline.
'u': fills nups.
Requires a previous call to lua_getstack () to refer ar to the desired
function;
returns 0 if error.

CC *lua_getlocal
(L, const LD *ar, int n);

Pushes the value of nth local variable (from 1, in order of appearance);
requires a previous call to
lua_getstack () to refer ar to the desired function;
returns the name of the variable, or NULL if error.

CC *lua_setlocal
(L, const LD *ar, int n);

Assigns value at stack[top] to the nth local variable (from 1, in order
of appearance); requires a previous call to lua_getstack () to refer ar
to the desired function;
returns the name of the variable, or NULL if error.

CC *lua_getupvalue (L, int i, int n); Pushes the nth upvalue (from 1, in order of appearance) of thefunction
at stack[i];
returns the name of the upvalue (empty string for C functions) or
NULL if error.

CC *lua_setupvalue (L, int i, int n); Pops and assign value to the nth upvalue (from 1, in order of
appearance) of the function at stack[i];
returns the name of the upvalue (empty string for C functions) or
NULL if error.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 4/6

Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

C API: auxiliary library
Generic stack checking
void luaL_argcheck (L, int c, int i, CC *m); Raises a "bad argument" detailed error for

stack[i] with message m if condition c is != 0.
void luaL_checktype (L, int i, t); Raises a "bad argument" detailed error if stack[i] is not of

type t, where t is a type constant (e.g. LUA_TTABLE).
void luaL_checkany (L, int i); Raises a "value expected" error if there is no value

(LUA_TNONE.) at stack[i].
void luaL_checkstack (L, int n, CC *m); Tries to grow stack size to top + n entries (cannot shrink it),

raises a "stack overflow" error including message m if
growing is not possible.

Reading & checking values from stack elements
LN luaL_checknumber (L, int i); Returns number (or string representing a valid number) from

stack[i] if possible, else raises a "bad argument" error.
LN LuaL_optnumber (L, int i, LN d); Returns default number d if stack[i] is nil or has no value

(LUA_TNONE), else returns result from
luaL_checknumber (L, i).

int luaL_checkint (L, int i); As luaL_checknumber () but returns an int.
long luaL_checklong (L, int i); As luaL_checknumber () but returns a long.
int luaL_optint (L, int i, LN d); As luaL_checkoptnumber () but returns an int.
long luaL_optlong (L, int i, LN d); As luaL_checkoptnumber () but returns a long.
CC *luaL_checklstring (L, int i, SZ *n); Returns string (or number) from stack[i] as a zero-terminated

string (may also contain embedded zeros) if possible, else
raises a "bad argument" error;
also returns string length in *n, unless n is NULL.
Note: if stack[i] is a number, it is changed to a string (this
may confuse table traversal if done on keys).

CC *LuaL_optlstring
(L, int i, CC *ds, SZ *n);

Returns default string ds if stack[i] is nil or has no value
(LUA_TNONE), else returns result from luaL_checklstring
(L, i, n).

CC *luaL_checkstring (L, int i); As luaL_checklstring (L, i, NULL), used for normal C
strings with no embedded zeros.

CC *luaL_optstring (L, int i, CC *ds); As luaL_optlstring (L, i, ds, NULL), used for normal C
strings with no embedded zeros.

Note: the above functions are useful to get arguments in C functions called from Lua.

Tables and metatables
int luaL_getn (L, int i); Returns the size of the table at stack[i]; works as table.getn ()

in the Lua table library.
int luaL_setn (L, int i, int n); Sets the size of the table at stack[i] to n; works as table.setn

() in the Lua table library.
int luaL_newmetatable (L, CC *tn); Creates a new table (to be used as metatable), pushes it and

creates a bidirectional registry association between that table
and the name tn;
returns 0 if s is already used.

void luaL_getmetatable (L, CC *tn); Gets the metatable named tn from the registry and pushes it,
or nil if none.

int luaL_getmetafield (L, int i, CC *fn); Pushes field named fn (e.g. __add) of the metatable of the
object at stack[i], if any;
returns 1 if found and pushed, else 0.

int luaL_callmeta (L, int i, CC *fn); Calls function in field named fn (e.g. __tostring) of the
metatable of the object at stack[i], if any, passing the object
itself and expecting one result;
returns 1 if found and called, else 0.

void *luaL_checkudata (L, int i, CC *mn); Checks if stack[i] is an userdata having a metatable named
mn;
returns its address, or NULL if the check fails.

Registry references
int luaL_ref (L, int i); Pops a value and stores it into the table at stack[i] using a new, unique

integer key as reference; typically used with
i = LUA_REGISTRYINDEX to store a Lua value into the registry and
make it accessible from C;
returns the new integer key, or the unique value LUA_REFNIL if
stack[i] is nil, or 0 if not done.

void luaL_unref (L, int i, int r); Removes from the table at stack[i] the value stored into it by luaL_ref
() having reference r.

LUA_NOREF Value representing "no reference", useful to mark references as invalid.

Library initialization
typedef struct luaL_reg {

CC *name;
CF cf;

} luaL_reg

Structure used to declare an entry in a list of C functions to be
registered by luaL_openlib () below; cf is the function and name will
be its Lua name.

int luaL_openlib (L, CC ln,
const luaL_reg *fl, int n);

Creates (or reuses) a table named ln and fills it with the name-function
pairs detailed in the fl list, terminated by a {NULL, NULL} pair; also
pops n upvalues from the stack and sets them as common upvalues for
all the functions in the table;
typically used to create a Lua interface to a C library.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 5/6

Lua 5.1 C API short reference - Freely distributable under the Lua license available at http://www.lua.org.
Draft for 5.0 by Enrico Colombini <erix_at_erix.it> 2004, update to 5.1 by Ewald Arnold <lua_at_ewald-arnold.de> 2010. Based on material © Tecgraf, PUC-Rio.

Chunk loading
int luaL_loadfile(L, CC *fn); Loads and precompiles into a Lua chunk (does not execute) the

contents of the file named fn;
returns 0 if OK, LUA_ERRSYNTAX if syntax error,
LUA_ERRMEM if allocation error, LUA_ERRFILE if error while
reading fn.

int luaL_loadbuffer
(L, CC *b, SZ n, CC *cn);

Loads and precompiles into a Lua chunk (does not execute) the
contents of memory buffer (string) b for a length of n bytes, assigns
cn as internal name for the loaded chunk;
returns 0 if OK, LUA_ERRSYNTAX if syntax error,
LUA_ERRMEM if allocation error.

Error reporting
int luaL_error (L, CC *fs, ...); Builds a Lua string by replacing formatting directives in the string fs

with the following args, as lua_pushfstring () does (see Pushing
elements on top of stack), pushes the resulting message and calls
lua_error ();
does not return.

int luaL_argerror (L, int i, CC *m); Unconditionally raises a "bad argument" detailed error for stack[i],
including message m; also works from within methods having a self
argument;
does not return.

int luaL_typerror (L, int i, CC *tn); Unconditionally raises a "bad argument" detailed error for stack[i],
including expected type name tn and actual type name;
does not return.

void luaL_where (L, int n); Pushes a string with the current source line and number at level n [0 =
current, 1 = caller].

String buffers
#define LB luaL_Buffer Abbreviation used in this document.

void luaL_buffinit (L, LB *b); Initializes the buffer b.
void luaL_putchar (int b, int c); Adds character c to the buffer b.
void luaL_addlstring (LB *b, CC *s, int n); Adds a copy of memory block (generic string) s of length n to

the buffer b.
void luaL_addstring (LB *b, CC *s); Adds a copy of zero-terminated string s to the buffer b.
void luaL_addvalue (LB *b); Pops a value (string or number) and adds it to the buffer b;

does not violate the balanced stack usage requirement when
using buffers.

void luaL_pushresult (LB *b); Pushes the contents of buffer b as a single string, empties the
buffer.

char *luaL_prepbuffer (LB *b); Returns the address of a memory block where up to
LUAL_BUFFERSIZE bytes can be written (the user is
responsible for avoiding overflow); luaL_addsize () should be
called afterwards to add those bytes to the buffer b.

void luaL_addsize (LB *b, int n); Adds n bytes (n <= LUAL_BUFFERSIZE) to the buffer b; the
bytes should have previously been written into memory at the
address returned by luaL_prepbuffer (); no other buffer
functions should be called between luaL_prepbuffer () and
luaL_addsize ().

Notes: string buffering uses the stack as temporary space and has no size limit; the (system-dependent)
constant LUAL_BUFFERSIZE is only used for direct manipulation via luaL_prepbuffer () and
luaL_addsize ();
stack usage must be balanced between calls to buffering functions, with the exception of
luaL_addvalue ().

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 6/6

